SOLDERING TO NITINOL

Nitinol (nickel/titanium alloy) has increasingly become a very popular material in the medical industry, largely due to its shape memory characteristics, where it is often used in stents, catheters and other implants. Medical device manufacturers often wish to mechanically bond Nitinol to another metallic material, such as stainless steel, using a solder alloy.

The key to soldering to Nitinol is using an appropriate flux that will effectively reduce both the nickel and titanium surface oxides. Since the devices are used in the human body, it is important that the selected solder alloy has minimum biological activity and the flux residue is completely removed after the soldering operation. Therefore, it is imperative that the selected solder alloy contains no high toxicity metals such as lead, antimony or cadmium.

The tin-silver eutectic solder, 96.5% tin, 3.5% silver (Indalloy #121), is a preferred alloy in that the tensile strength of this solder is high, has a reasonable melting temperature of 221°C, is lead-free, and wets well to Nitinol. The gold-tin eutectic solder, 80% gold, 20% tin, (Indalloy #182), has even higher tensile strength along with a good resistance to peel and with a melting temperature of 280°C can withstand autoclaving temperatures. In using this alloy a nitrogen protective cover gas gave more consistent results and simplified flux removal. The high gold content is also very acceptable for in vivo applications. Although these solder alloys have lower toxicity than common tin-lead solder, it is imperative that the medical manufacturer conduct the necessary tests to insure that the constituents will have no adverse health effects when used in a particular application within the human body.

In wettability tests, it was found that Indalloy Flux #2 provides the best wettability to Nitinol. Soldering temperature should be 25° to 50°C above the liquidus temperature of the solder. Adequate post soldering cleaning of the flux residue using detergent, water and mechanical scrubbing should be performed to insure that all traces of the flux are removed. Appropriate testing should be done to insure that all traces of the flux have been removed.

All statements, technical information and recommendations contained herein are based on tests, or other information, available to us which we believe to be reliable, but the accuracy or completeness thereof is not guaranteed, and the following is made in lieu of all warranties express or implied, including warranties of merchantability and fitness. Our only obligation shall be to replace such quantities of the product as is proved to be defective provided that a claim is submitted to us within 60 days from the date of shipment. We shall not be liable for any injury, loss or damage, direct or consequential, arising out of the use of or the inability to use the product. It shall be solely the purchaser's obligation to determine the suitability of the product for his intended use and the purchaser assumes all risk and liability whatsoever in connection therewith.

No statement or recommendation not contained herein shall have any force or effect unless in an agreement signed by an authorized representative or seller.

Since we have no means of controlling the final use of the product by the consumer or purchaser it is the responsibility of the immediate purchaser and any intermediate seller or sellers to inform the user of the purposes for which the product may be fit and suitable and of the properties of the product, including any precautionary measures which must be taken in order to insure the safety of the user and of other third persons and property.
MECHANICAL PROPERTIES

| Indalloy Number | Liquidus °C | Solidus °C | Density gm/cm³ | % of IACS | Electrical Conductivity µohms-cm⁻¹ | Thermal Conductivity W/cm⁻¹ °C | Thermal Expansion PPM °C | Tensile Strength PSI | Shear Strength PSI | Young's Modulus PSI | Elongation % | Brinell Hardness | Latent Heat of Fusion J/g | Specific Heat C/°C | Specific Heat C/°C | Indalloy Number |
|----------------|-------------|------------|----------------|-----------|-----------------------------------|-----------------------------|-------------------------|----------------------|-------------------|------------------|--------------|----------------|----------------|----------------------|----------------|-----------------------|---------------------|
| 121 | 221 | 221 | 0.2659 | 7.36 | 16 | 33 | 30 | 5620 | 73 | 40 | | | 430 | 430 | | 121 |

Lead free high temp solder. Excellent thermal fatigue properties. Not recommended for soldering to gold thicker than 0.5 microns.

NOTES

- **note 1:** Brinell Hardness, 2mm ball, 4kg load
- **note 2:** Modified Brinell hardness, using 100-kg load, 1/2 min.
- **note 3:** Depends on specimen preparation.
- **note 4:** % elongation on 5.65 (sq. root Area) gauge length

Conversions:

- Resistivity of IACS / Elec. conductivity %IACS = Resistivity of alloy
- ex: 1.72 x 100 / % IACS = micro ohm - cm